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Applications spread their  functionality amongst several devices
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Partitioning of Pervasive Computing Services

Ambient music player application 

user

music library audio controller 

Applications are decomposed to run on multiple devices
‣Runtime application partitioning
‣Retractable 
‣Resilient to network disconnections
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Existing Approaches

• Mostly static and controlled by the programmer 
(e.g. J-Orchestra,  Addistant, .. )

• Object migration automatic or based on algorithms 

• No network failure handling mechanisms
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Service Partitioning Requirements

Runtime Application Partitioning

Retractable
Resilient to 

Network Failures
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Resilient Actor Model

A resilient actor:

- A program entity that encapsulates a set of objects

- Elastic bindings to other actors
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Resilient Actor Model
A resilient actor:

- A program entity that encapsulates a set of objects

- Elastic bindings to other actors

Two partitioning operations

- Stretch - moves an actor to another device

- Retract - moves an actor back to original device

Resilience strategies (move, copy, rebind, standstill)
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Service Partitioning
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Resilience Strategies
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Stretch under Rebind Strategy

Ambient music player

Controller Music library Audio

Cellphone

Keyboard Speakers

Hi-Fi system

Speakers

Move Copy Rebind

Standstill Standstill

stretch: Hi-Fi system

A different audio service

27



Retract under Rebind Strategy

Ambient music player

Controller Music library Audio

Cellphone

Keyboard Speakers

Hi-Fi system

Speakers

Move Copy Rebind

Standstill Standstill

A different audio service

28



Retract under Rebind Strategy

Ambient music player

Controller Music library Audio

Cellphone

Keyboard Speakers

Hi-Fi system

Speakers

Move Copy Rebind

Standstill Standstill

A different audio service

retract

29



Retract under Rebind Strategy

Ambient music player

Controller Music library Audio

Cellphone

Keyboard Speakers

Hi-Fi system

Speakers

Move Copy Rebind

Standstill Standstill

A different audio service

30



 

Stretch under Copy Strategy

Ambient music player

Controller Music library Audio

Cellphone

Keyboard Speakers

Move Copy Rebind

Standstill Standstill

stretch: Laptop

Laptop

31



Stretch under Copy Strategy
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Stretch under Move Strategy
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Stretch under Move Strategy
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Retract under Move Strategy
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Retract under Move Strategy
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Resilient Actors in AmbientTalk

AmbientTalk (Van Cutsem et. al, 2007)

- An actor-based language for pervasive computing environments 

- Publish/Subscribe service discovery 

- Network failure handling mechanisms

Four language constructs for service partitioning:

actor: resilientAs: and bindTo: resilientAs:

stretch: and retract:
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def ambientMusicPlayer :=actor:{ 
    |controller, audio, musicLibrary|
   def theController := bindTo: controller  resilientAs:[move];

   def theAudio := bindTo: audio resilientAs: [rebind(audioService)];

   def theMusicLib := bindTo: musicLibrary resilientAs: [copy];

} resilientAs: [standstill];

Example: Ambient music player

ambientMusicPlayer

audiomusicLibrarycontroller

A B C

def controller := actor: {
   def theKeyboard := ...;
   def getInput() { ... };
   ....
} resilientAs: [move]; 

def musicLibrary := actor: {
   def myLib := Vector.new();
   def getPlayList(){ ... }
   ....
} resilientAs: [copy];

def audio := actor: {
    def theSpeaker := ..;
    .....
} resilientAs: [move];

A

B

C
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def ambientMusicPlayer :=actor:{ 
    |controller, audio, musicLibrary|
   def theController := bindTo: controller  resilientAs:[move];

   def theAudio := bindTo: audio resilientAs: [rebind(audioService)];

   def theMusicLib := bindTo: musicLibrary resilientAs: [copy];

} resilientAs: [standstill];

Example: Ambient music player

ambientMusicPlayer

audiomusicLibrarycontroller

A B C

def controller := actor: {
   def theKeyboard := ...;
   def getInput() { ... };
   ....
} resilientAs: [move]; 

def audio := actor: {
    def theSpeaker := ..;
    .....
} resilientAs: [move];

A

B

C
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def Hi-FiSystem := ...//reference to a Hi-Fi system actor  

audio <-  stretch: Hi-FiSystem;

audio <- retract;



def ambientMusicPlayer :=actor:{ 
   def theAudio := bindTo: audio resilientAs: [rebind(audioService)];

} resilientAs: [standstill];

Resolution of Strategies
ambientMusicPlayer

audio

rebind
def audio := actor: { .....} resilientAs: [move];

move
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def ambientMusicPlayer :=actor:{ 
   def theAudio := bindTo: audio resilientAs: [rebind(audioService)];

} resilientAs: [standstill];

Resolution of Strategies
ambientMusicPlayer

audio

rebind
def audio := actor: { .....} resilientAs: [move];

move
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?



def ambientMusicPlayer :=actor:{ 
   def theAudio := bindTo: audio resilientAs: [rebind(audioService)];

} resilientAs: [standstill];

Resolution of Strategies
ambientMusicPlayer

audio

def audio := actor: { .....} resilientAs: [move];

rebind
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Conflict resolution mechanism
Elastic binding strategy Resilient actor strategy

{rebind, standstill} {resilience strategy}*

{move, copy} {resilience strategy}*



Implementation

- Reflectively implemented on top of  AmbientTalk

- Resilience strategies as objects

- Elastic bindings as proxy objects

Proxy object

Strategy object

Object A Object B

Resilient actor 1 Resilient actor 2

Object reference Conceptual elastic binding
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Extensible Implementation
Custom Resilience Strategies

e.g Towards proactive replication

 def copyStrategyExtension := extend: 

  copyStrategy with: {

    def time := 10;

    def stretch: location {

     super^stretch: location;

      whenever: seconds(time) elapsed: {

       //...update state

       };

   };

};
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update

Custom Copy

 Strategy object

Copy Strategy 
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In Summary

• Resilient Actor Model

- Resilient actors

- Elastic bindings 

- Partitioning operations

Runtime Application Partitioning

Retractable

Resilient to Network Failures

• Need for Resilient Partitioning of Pervasive Computing Services

• Extensible Implementation (Resilience strategies)

• Formal Definition (see paper)
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Thank You 
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