
Resilient Actors

Engineer Bainomugisha, Jorge Vallejos,
 Éric Tanter*, Elisa Gonzalez Boix, Pascal Costanza,

 Wolfgang De Meuter, Theo D’Hondt

Vrije Universiteit Brussel, Belgium

*University of Chile

July 14, 2009

International Conference on Pervasive Services (ICPS’09), London, UK

 A Runtime Partitioning Model for Pervasive Computing Services

Pervasive Computing Environments

2

Computers integrated into everyday devices (Weiser, 1993)

Pervasive Computing Environments

3

Computers integrated into everyday devices (Weiser, 1993)

user

Pervasive Computing Environments

4

Computers integrated into everyday devices (Weiser, 1993)

user

Pervasive Computing Environments

Close and start-up the application as the user roams
5

x

user

Pervasive Computing Environments

Close and start-up the application as the user roams

user

6

x

x

Applications spread their functionality amongst several devices

Ambient music player application

user

7

Partitioning of Pervasive Computing Services

Applications spread their functionality amongst several devices

user

Ambient music player

music library audio controller

8

Partitioning of Pervasive Computing Services

Ambient music player application

user

music library

audio

controller

Applications are decomposed to run on multiple devices
‣Runtime application partitioning

9

Partitioning of Pervasive Computing Services

Ambient music player application

user

music library

audio controller

Applications are decomposed to run on multiple devices
‣Runtime application partitioning
‣Retractable

10

Partitioning of Pervasive Computing Services

Ambient music player application

user

music library

audio controller

Applications are decomposed to run on multiple devices
‣Runtime application partitioning
‣Retractable

11

Partitioning of Pervasive Computing Services

Partitioning of Pervasive Computing Services

Ambient music player application

user

music library audio controller

Applications are decomposed to run on multiple devices
‣Runtime application partitioning
‣Retractable
‣Resilient to network disconnections

12

Existing Approaches

• Mostly static and controlled by the programmer
(e.g. J-Orchestra, Addistant, ..)

• Object migration automatic or based on algorithms

• No network failure handling mechanisms

13

Service Partitioning Requirements

Runtime Application Partitioning

Retractable
Resilient to

Network Failures

14

Resilient Actor Model

A resilient actor:

- A program entity that encapsulates a set of objects

- Elastic bindings to other actors

15

Resilient Actor Model
A resilient actor:

- A program entity that encapsulates a set of objects

- Elastic bindings to other actors

Two partitioning operations

- Stretch - moves an actor to another device

- Retract - moves an actor back to original device

16

Resilient Actor Model
A resilient actor:

- A program entity that encapsulates a set of objects

- Elastic bindings to other actors

Two partitioning operations

- Stretch - moves an actor to another device

- Retract - moves an actor back to original device

Resilience strategies (move, copy, rebind, standstill)

17

Service Partitioning

Ambient music player

Local references

Objects

Cellphone

Cellphone’s local resources
Keyboard Speakers

18

Service Partitioning

Ambient music player

Elastic binding

Resilient actor

Controller Music library Audio

Cellphone’s local resources

Cellphone

Keyboard Speakers19

Service Partitioning
Ambient music player

Elastic binding

Resilient actor

Controller Music library Audio

Cellphone’s local resources

Cellphone

Keyboard Speakers

Hi-Fi system

stretch: Hi-Fi system

Speakers

20

Service Partitioning
Ambient music player

Elastic binding

Resilient actor

Controller Music library Audio

Cellphone

Keyboard Speakers

Hi-Fi system

Speakers

21

Retraction
Ambient music player

Elastic binding

Resilient actor

Controller Music library Audio

Cellphone

Keyboard Speakers

Hi-Fi system

retract

Speakers

22

Manual Retraction
Ambient music player

Elastic binding

Resilient actor

Controller Music library Audio

Cellphone’s local resources

Cellphone

Keyboard Speakers

Hi-Fi system

Speakers

23

Automatic Retraction
Ambient music player

Elastic binding

Resilient actor

Controller Music library Audio

Cellphone

Keyboard Speakers

Hi-Fi system

Speakers

24

Automatic Retraction
Ambient music player

Elastic binding

Resilient actor

Controller Music library Audio

Cellphone’s local resources

Cellphone

Keyboard Speakers

Hi-Fi system

Speakers

25

Resilience Strategies
Ambient music player

Controller Music library Audio

Cellphone

Keyboard Speakers

Move Copy Rebind

Standstill Standstill

26

Stretch under Rebind Strategy

Ambient music player

Controller Music library Audio

Cellphone

Keyboard Speakers

Hi-Fi system

Speakers

Move Copy Rebind

Standstill Standstill

stretch: Hi-Fi system

A different audio service

27

Retract under Rebind Strategy

Ambient music player

Controller Music library Audio

Cellphone

Keyboard Speakers

Hi-Fi system

Speakers

Move Copy Rebind

Standstill Standstill

A different audio service

28

Retract under Rebind Strategy

Ambient music player

Controller Music library Audio

Cellphone

Keyboard Speakers

Hi-Fi system

Speakers

Move Copy Rebind

Standstill Standstill

A different audio service

retract

29

Retract under Rebind Strategy

Ambient music player

Controller Music library Audio

Cellphone

Keyboard Speakers

Hi-Fi system

Speakers

Move Copy Rebind

Standstill Standstill

A different audio service

30

Stretch under Copy Strategy

Ambient music player

Controller Music library Audio

Cellphone

Keyboard Speakers

Move Copy Rebind

Standstill Standstill

stretch: Laptop

Laptop

31

Stretch under Copy Strategy

Ambient music player

Controller Music library Audio

Cellphone

Keyboard Speakers

Move Copy Rebind

Standstill Standstill

Laptop

Copy of music library

32

Retract under Copy Strategy

Ambient music player

Controller Music library Audio

Cellphone

Keyboard Speakers

Move Copy Rebind

Standstill Standstill

Laptop

Copy of music library

retract

33

Retract under Copy Strategy

Ambient music player

Controller Music library Audio

Cellphone

Keyboard Speakers

Move Copy Rebind

Standstill Standstill

Laptop

34

Stretch under Move Strategy

Ambient music player

Controller Music library Audio

Cellphone

Keyboard Speakers

Move Copy Rebind

Standstill Standstill

stretch: Laptop

Laptop

Keyboard

35

Stretch under Move Strategy

Ambient music player

Backup Copy of
controller Music library Audio

Cellphone

Keyboard Speakers

Move Copy Rebind

Standstill Standstill

Laptop

Keyboard

Controller

36

Retract under Move Strategy

Ambient music player

Backup Copy of
controller Music library Audio

Cellphone

Keyboard Speakers

Move Copy Rebind

Standstill Standstill

Laptop

Keyboard

Controller

retract

37

Retract under Move Strategy

Ambient music player

Controller Music library Audio

Cellphone

Keyboard Speakers

Move Copy Rebind

Standstill Standstill

Laptop

Keyboard

38

Resilient Actors in AmbientTalk

AmbientTalk (Van Cutsem et. al, 2007)

- An actor-based language for pervasive computing environments

- Publish/Subscribe service discovery

- Network failure handling mechanisms

Four language constructs for service partitioning:

actor: resilientAs: and bindTo: resilientAs:

stretch: and retract:

39

def ambientMusicPlayer :=actor:{
 |controller, audio, musicLibrary|
 def theController := bindTo: controller resilientAs:[move];

 def theAudio := bindTo: audio resilientAs: [rebind(audioService)];

 def theMusicLib := bindTo: musicLibrary resilientAs: [copy];

} resilientAs: [standstill];

Example: Ambient music player

ambientMusicPlayer

audiomusicLibrarycontroller

A B C

def controller := actor: {
 def theKeyboard := ...;
 def getInput() { ... };

} resilientAs: [move];

def musicLibrary := actor: {
 def myLib := Vector.new();
 def getPlayList(){ ... }

} resilientAs: [copy];

def audio := actor: {
 def theSpeaker := ..;

} resilientAs: [move];

A

B

C

40

def ambientMusicPlayer :=actor:{
 |controller, audio, musicLibrary|
 def theController := bindTo: controller resilientAs:[move];

 def theAudio := bindTo: audio resilientAs: [rebind(audioService)];

 def theMusicLib := bindTo: musicLibrary resilientAs: [copy];

} resilientAs: [standstill];

Example: Ambient music player

ambientMusicPlayer

audiomusicLibrarycontroller

A B C

def controller := actor: {
 def theKeyboard := ...;
 def getInput() { ... };

} resilientAs: [move];

def audio := actor: {
 def theSpeaker := ..;

} resilientAs: [move];

A

B

C

41

def Hi-FiSystem := ...//reference to a Hi-Fi system actor

audio <- stretch: Hi-FiSystem;

audio <- retract;

def ambientMusicPlayer :=actor:{
 def theAudio := bindTo: audio resilientAs: [rebind(audioService)];

} resilientAs: [standstill];

Resolution of Strategies
ambientMusicPlayer

audio

rebind
def audio := actor: {} resilientAs: [move];

move

42

?

def ambientMusicPlayer :=actor:{
 def theAudio := bindTo: audio resilientAs: [rebind(audioService)];

} resilientAs: [standstill];

Resolution of Strategies
ambientMusicPlayer

audio

rebind
def audio := actor: {} resilientAs: [move];

move

43

Conflict resolution mechanism
Elastic binding strategy Resilient actor strategy

{rebind, standstill} {resilience strategy}*

{move, copy} {resilience strategy}*

?

def ambientMusicPlayer :=actor:{
 def theAudio := bindTo: audio resilientAs: [rebind(audioService)];

} resilientAs: [standstill];

Resolution of Strategies
ambientMusicPlayer

audio

def audio := actor: {} resilientAs: [move];

rebind

44

Conflict resolution mechanism
Elastic binding strategy Resilient actor strategy

{rebind, standstill} {resilience strategy}*

{move, copy} {resilience strategy}*

Implementation

- Reflectively implemented on top of AmbientTalk

- Resilience strategies as objects

- Elastic bindings as proxy objects

Proxy object

Strategy object

Object A Object B

Resilient actor 1 Resilient actor 2

Object reference Conceptual elastic binding

45

Extensible Implementation
Custom Resilience Strategies

e.g Towards proactive replication

 def copyStrategyExtension := extend:

 copyStrategy with: {

 def time := 10;

 def stretch: location {

 super^stretch: location;

 whenever: seconds(time) elapsed: {

 //...update state

 };

 };

};

46

update

Custom Copy

 Strategy object

Copy Strategy

object

In Summary

• Need for Resilient Partitioning of Pervasive Computing Services

47

In Summary

• Resilient Actor Model

- Resilient actors

- Elastic bindings

- Partitioning operations

• Need for Resilient Partitioning of Pervasive Computing Services

48

In Summary

• Resilient Actor Model

- Resilient actors

- Elastic bindings

- Partitioning operations

Runtime Application Partitioning

Retractable

Resilient to Network Failures

• Need for Resilient Partitioning of Pervasive Computing Services

49

In Summary

• Resilient Actor Model

- Resilient actors

- Elastic bindings

- Partitioning operations

Runtime Application Partitioning

Retractable

Resilient to Network Failures

• Need for Resilient Partitioning of Pervasive Computing Services

• Extensible Implementation (Resilience strategies)

• Formal Definition (see paper)
50

Thank You

51
http://prog2.vub.ac.be/~ebainomu/

ebainomu@vub.ac.be

http://prog2.vub.ac.be/~ebainomu/
http://prog2.vub.ac.be/~ebainomu/
http://prog2.vub.ac.be/~ebainomu/
http://prog2.vub.ac.be/~ebainomu/
http://prog2.vub.ac.be/~ebainomu/
http://prog2.vub.ac.be/~ebainomu/

